Monday, October 26, 2015

Synthetic Division

We learned in class that Synthetic Division is a shorter method of polynomial division. When using this method, the arrangement of the coefficients of f(x) should be in a descending order of power and substitute the missing terms with zero. 

    Example: 
          
      Divide 3x3 – 2x2 + 3x – 4 by x – 3 
         
    First, write down all the coefficients, and put the zero from x – 3 = 0 (so it`ll be x = 3) at the left.
       


    Set up the synthetic division





      





     
    Next, 'drop' the first coefficient.

      
        

    Carry down the 3






    Multiply the number by the potential zero (which is 3), carry up to the next column, and add down.
      
       

    bottom row: 3  7






    Repeat this process.
      
       


    bottom row:  3  7  24






    Repeat this process again until you reach the end.

    bottom row:  3  7  24  68






Hence, we`ll get 68 as our remainder. Because we began with a polynomial of degree 3 and then divided by x – 3, we are left with a polynomial of degree 2Then the bottom line symbolized the polynomial 3x2 + 7x + 24 with a remainder of 68. Put the final result into the required "mixed number" format, we`ll get the answer:
3x ² + 7x + 24 + 68/(x - 3)




Another example:

         Divide Problem 1

                  Solution



No comments:

Post a Comment