Thursday, November 12, 2015

Unit Circle

Hey Guys!

A few days before we learned about the Unit Circle. A Unit Circle is the circle with its centre at the origin and with a radius of unit

Equation: x^2 + y^2 = 1

Positive distance is measured in  a counterclockwise direction; negative distance is measured in a clockwise direction

The notation P(θ) is used to detonate the terminal point, where the terminal arm of angle θ intercepts the unit circle. For every arc length θ on the unit circle, P(θ) is unique.

Here's a picture of the unit circle in:                                                                                                   
Degrees
                                                           

           

                



Radiant

We can define P(θ) as the ordered pair P(x,y)

Remember, if r=1:


sin θ  =  y
               r
       
csc θ  =  r
                y
  
cos θ  =  x
               r
       
sec θ  =  r
               x
  
tan θ  =  y
              x
       
cot θ  =  x
               y


or if its a special triangle we use this 
AngleSinCosTan=Sin/Cos
30°1√3 = √33
45°1
60°√3
Note: The equation for a circle  with centre at origin and a radius other than 1 would be x^2 + y^2 = r^2 or cos^2θ + sin^2θ = 1 

Overall look on the unit circle:


Remember:


Good luck everybody on the test! 

No comments:

Post a Comment